Archive for December, 2010

St. Paul Advises Residents To Clear Roofs

December 31, 2010

St. Paul Advises Residents To Clear Roofs

The city of St. Paul is advising residents to take action to clear their rooftops of ice and snow now, to avoid potential damage in the future. Taking action now can also help you avoid costly repairs to your roof  from ice dams.

Read full story:  CBS Minnesota – News, Sports, Weather, Traffic, and the Best of Minnesota

Short URL:
http://tld30.com/a/?xRISI

Ice Dams Causing Serious Damage To Minnesota Homes

December 31, 2010

Weather Conditions Make Ice Dam Problems Worse In Minnesota

Finally, the rain. You think Thursday’s rainfall was a good thing because it whisked away some snow? Not necessarily. Water retention, especially on flat roofs, could compound the problem, as could freezing temperatures today and Saturday. The melting-freezing cycle is a big reason the ice dam epidemic could continue into the New Year.

In the Twin Cities, many longtime property managers and homeowners say this is the first time in memory they have grappled with significant ice dams. They fear gutter damage, water damage, mold and even collapsed roofs.

A spokeswoman for State Farm Insurance said the insurer has received about 50 claims per day regarding ice dams in the metro area, or more than 500 to date.

Why is this year so bad?

“We’ve had 34 inches of snow in one month,” said Paul Douglas, former Twin Cities television meteorologist and founder of WeatherNation, a weather news service in Excelsior.

Douglas called the convergence of snow, thaw and rain a “worst-case scenario” for ice dams. But he said there’s a pale light at the end of the tunnel: Drips and leaks should stop tonight as temperatures fall and rooftop snow stops melting.

We’re going to be below freezing through next week, so homeowners may have a chance to catch up and try to get rid of some of these ice dams.

There’s also the chance rain and higher temperatures knocked off enough snow and ice to eliminate some ice dams.

In some roof configurations, if there’s not good drainage, it could actually add to the problem. It just wasn’t warm long enough.”

If you have experienced  ice damming, contact a reliable roofing contractor to repair the roof damage as soon as possible. They will work with your insurance company and can assist you in filing your claim.

Maintaining A Flat Roof

December 30, 2010

Flat Roof Maintenance

There is no perfect roof, but for some reason flat roofs never seem to get any respect!  The sloped roof is far and away the choice for residential construction, and more and more builders are putting them on commercial and industrial buildings as well.

Advantages Of A Flat Roof

The flat roof has many advantages and offers unique options that are too often overlooked and underrated.  For instance:

  • A flat roof is considerably cheaper to build than a sloped roof.  They can be built quicker saving money on labor, and they have less surface area requiring less expense for materials.
  • They are more easily accessible and far less dangerous than sloped roofs.
  • They offer more uses than just keeping the elements out (i.e. a flat roof can be used for storage or as a roof top garden and terrace.
  • Compared to a sloped roof, a flat roof provides you maximum functional cubic volume for your construction dollar.

Care & Maintenance Of A Flat Roof

Assuming a flat roof is constructed of high quality materials and skillfully installed (especially at the edges), the key to avoiding problems is regular inspection and maintenance.

  • Inspect your flat roof seasonally and even more often if you have trees nearby that can drop leaves and debris which clog drains and create water puddles.
  • Drainage is vital!  Always make certain drains are clear.
  • After heavy snow or a freeze-thaw cycle look for, and break up, ice dams which cause water build up.
  • Look for signs of “ponding” after rain.  “Ponding” means a low area must be built up with rigid insultation and resurface to ensure proper water flow.
  • Blistering or mushy areas mean that water has gotten between roofing layers.  These areas need to be cut out and replaced.
  • When the surface looks cracked or “alligatored” consider a new fresh application of roofing tar.
  • To extend the life of a flat roof consider applying reflective aluminum paint.  It will prevent ultraviolet light from breaking down the roofing material and keep the building cooler.
  • Make certain edges are sealed and all flashing is in good repair.

Flat roofs have many advantages and offer unique architectural and living options.  They can serve you faithfully for many years, but the key is regular inspection and simple maintenance when required.

Most important of all is that a flat roof must be designed and installed by a professional roofing company with the expertise, skill, equipment and materials to do it right.

Avoiding Roofing Disasters

December 28, 2010

Avoid Common Mistakes That Could Cost You Thousands!

Exciting and informative, this video gives you the inside scoop on selecting a new roofing system, the right contractor, and best materials to protect your biggest asset – your home.

The result… your ultimate peace of mind!

Learn how to make not only the right choice, but the “safest” choice for your roofing needs. The following educational video is provided by GAF-ELK Roofing Manufacturing. United Roofing and Remodeling Inc. is able to bring you this video because of our Master Elite Certification from GAF-ELK.
The video features Jim Hartz (national TV news correspondent) and JoAnne Liebeler (from Hometime® seen on Public Television).

Because of GAF-Elk’s stringent standards, only the top 3% of all roofing contractors have qualified as Master Elite contractors! Choosing a GAF-Elk Master Elite contractor is your assurance that you’ll be dealing with a quality, reputable, and dependable professional contractor — not some “fly-by-night” contractor that is not available to answer your questions.

Source: www.gaf.com

EPDM Roofing Systems Are An Energy Efficient Option

December 23, 2010

Commercial EPDM Single – Ply Roofing System Part 4

Longevity Pays

Other important aspects of designing an energy-efficient roofing system are product durability and the role of life cycle assessment (LCA), which evaluates the environmental impact of a product throughout its life cycle. Although the USGBC has incorporated LCA of building materials in its LEED rating system, some industry experts believe there is an overemphasis on environmental benefits without equal concern for durability.

In a white paper titled “Life Cycle Assessment and the LEED Green Building Rating System,” Dr. James L. Hoff, DBA, research director for the Center for Environmental Innovation in Roofing, explained, “É no building product should be considered truly sustainable unless it also meets or exceeds the desired durability of the building itself.”

In terms of roofing, the primary concern with LEED is the insufficient emphasis on durability. For example, a project can achieve one LEED point for painting the building’s roof with a reflective coating, some of which may last less than five years. However, no credit is afforded for selecting a high-performance, non-reflective roofing system that may be designed and warranted to last 30 years or more.

Life cycle costs of EPDM membranes are lower than those of other popular low-slope roofing systems. EPDM membrane durability has also led to long life expectancy ratings, including more than 23 years in covered applications, more than 26 years in exposed applications and an estimate of more than 50 years for ultimate service life.

In the face of challenging economic times, choosing roofing materials that can help reduce overall energy costs involves looking beyond surface color. For more than 40 years, architects, roof consultants and contractors have relied on EPDM’s weatherability, durability and other long-term performance attributes. Today, the environmental benefits of EPDM play an equally significant role in determining what roofing system is best suited for an individual building.

Talk to a Minnesota commercial roofing contractor to find out if an EPDM roof system is the right choice for your building.

Source: arwmag.com

EPDM Roofing Systems Are An Energy Efficient Option

December 21, 2010

Commercial EPDM Single – Ply Roofing System – Part 3

For any new or re-roof application, a multitude of factors must be weighed to determine the most appropriate roof design for each building.

White EPDM

In use since the 1980s, white EPDM roofing membranes feature the same characteristics and benefits of black EPDM, yet provide a highly reflective solution to coated membranes and thermoplastics. With its high solar reflectance index value, the bi-laminate, white-on-black cured membrane can help achieve points in the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) Green Building Rating System, specifically section SS 7.2 regarding the heat island effect, which requires the membrane to have a SRI value of greater than 78 for low-slope roof systems.

As a rubber-based material, white EPDM roofing systems are more flexible than other membranes, allowing for year-round application. In cooler temperatures, fully adhered EPDM membranes remain pliable and easy to install, while other membranes tend to stiffen and can be often more difficult to install, particularly on irregular substrates and vertical walls, such as parapets.

White EPDM roofing membranes are ideal for UL- and FM-rated systems, while exceeding ASTM D-4637 standards. They are well suited for new construction and re-roofing applications, and they can be installed over steel, concrete, wood and other common deck types.

The durability of EPDM membranes results in long life expectancy ratings, including more than 23 years in covered applications, more than 26 years in exposed applications and an estimate of more than 50 years for ultimate service life.

Saving Energy

Although reflective roofing materials have inherent value in the fight to gain energy efficiencies, the issue is not simply black vs. white. For any new or re-roof application, a multitude of factors must be weighed to determine the most appropriate roof design for each building. Choosing the right roof for the right situation is most important. That means moving beyond roof surface color and focusing on the building’s entire roofing assembly, including decking, insulation and roof substrate.

Light-colored roofs can reflect sunlight and help reduce cooling costs, particularly in warm, southern climates. However, the energy required to heat a building is often a more significant factor in overall energy usage.

According the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy, commercial buildings are a large and growing consumer of energy. They account for 18 percent of total U.S. energy consumption. In a typical office building, energy use accounts for 30 percent of operating costs, the largest single category of controllable costs.

The DOE’s ORNL also developed a Cool Roof Calculator that estimates cooling and heating savings for low-slope roof applications with non-black surfaces. A review of data available from the calculator indicates that among all 243 sites in its database, which includes cities within all 50 U.S. states, the Pacific Islands, Puerto Rico and eight Canadian provinces, only 35 (14 percent) have more cooling degree days (CDDs) than heating degree days (HDDs).

From cities like San Diego to Boston and Lubbock to Fargo, there are more HDDs than CDDs. As such, the need to reduce heating-related energy demands is much greater than air conditioning demands in many climate zones. Dark-colored roofing materials, such as black EPDM membranes, are often the most beneficial in such environments because they absorb solar radiation and transfer it into the building. By heating the building’s interior, less demand is placed on the heating system.

Through its Building Technologies Program, the DOE also publishes the Buildings Energy Data Book. Table 7.4 of the 2007 book outlines energy use intensity in various commercial building types, comparing heating and cooling as a percentage of total energy consumed. The average results show that heating accounts for 29 percent of the energy consumed within a building, while cooling totals a mere 6 percent. The statistics are even more compelling when broken into specific building segments, such as health care and educational facilities, which feature 55 percent to 10 percent and 33 percent to 5 percent heating-to-cooling ratios respectively.

This information reaffirms that reflective roofing should not be the only consideration when seeking to improve energy efficiencies for commercial buildings. It also points toward the need for more focus on reducing heating costs, and not merely lowering cooling costs.

Talk to a Minnesota commercial roofing contractor to find out if an EPDM roof system is the right choice for your building.

Source: arwmag.com

EPDM Roofing Systems Are An Energy Efficient Option

December 16, 2010

Commercial EPDM Single – Ply Roofing System Part 2

EPDM roofing membrane accounts for more than 1 billion square feet of new roof coverings in the United States each year. Today, there are well over 500,000 warranted roof installations totaling more than 20 billion square feet of EPDM membrane in place nationwide.

However, when seeking a “cool roofing” option, many building professionals do not realize that black EPDM provides similar energy savings as its white, non-EPDM, counterparts. A cool roof, as defined by the California Energy Code, is a roof covering or surface that has been tested and labeled by the Cool Roof Rating Council as having an initial solar reflectance of a least 0.70 and an initial thermal emittance of at least 0.75. So where exactly does ballasted roofing fit among cool roofing options?

A three-year study initiated by the Single Ply Roofing Industry (SPRI) and conducted by the U.S. Department of Energy’s Oak Ridge National Laboratory (ORNL) was completed in 2008 and provided extensive analysis of the energy performance of ballasted systems. As part of the study, titled Evaluating the Energy Performance of Ballasted Roof Systems, six roof panels – four ballasted EPDM featuring different stone/paver ballast weights and two control panels (a white TPO and a black EPDM membrane) – were subjected to daily weather cycles side-by-side from March 2004 through April 2006.

EPDM Roof System

EPDM Roof

Among the key findings:

  • The cooling loads for the heavy and medium stone-ballasted and uncoated paver-ballasted systems were approximately the same as for the white system.
  • Cooling loads for the lightweight stone systems were slightly larger than for the white system but significantly less than for the black system.
  • By the start of the second year of the project, temperature and cooling loads increased for the white system due to the effects of weathering.
  • Heating loads for the ballasted systems showed random variation as loading increased and type changed. Except for the heavyweight stone system, they were about the same as for the white system.
  • The heavyweight stone system showed slightly less heating load than the black system but this is considered an anomaly due to rain effects.
  • All evidence on clear days of diurnal behavior showed the heavyweight stone and uncoated paver systems performing equally due to the same thermal mass despite different solar reflectance.

The study further revealed that the ballasted EPDM profiles offered better thermal emittance properties. While solar reflectance measures how well a roofing material reflects sunlight, emittance measures the roofing material’s ability to release absorbed heat back into the atmosphere, rather than into the building. Both are important properties that help a roofing system remain cool.

In the study, the ballasted EPDM profiles delayed the temperature rise for up to three hours, effectively moving about 20 percent of the cooling load into off-peak hours of the day when energy costs are lowest. Summarizing the study’s results, AndrŽ Desjarlais, program manager of the Building Envelopes Program at ORNL, stated that certain ballasted roof systems “are as effective as white-membrane roofs in mitigating peak energy demand.”

As a result, several regulatory bodies across the country have adopted new standards in regard to cool roof materials. For instance, the California Energy Commission has approved the use of ballasted roof systems as a cool roofing option as part of its 2009 Title 24 energy standards. And, the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) has tentatively decided to update its cool roofing standards and will recognize ballasted roof systems as an acceptable alternative to light-colored materials. Likewise, the city of Chicago, which has earned international accolades for its commitment to sustainable roofing practices, has added ballasted EPDM as an accepted cool roofing alternative in its municipal code for low-sloped roofs.

Talk to a Minnesota commercial roofing contractor to find out if an EPDM roof system is the right choice for your building.

Source: arwmag.com

Last Call For Homeowners To Take Advantage Energy Of Tax Credits

December 15, 2010

What Types Of Roofs Can Qualify For The ENERGY STAR Label?

The days are quickly running out for homeowners looking to upgrade the energy efficiency of their home this year.  Homeowners must have projects completed, products installed and ready to use, before the end of the month to qualify.

You can qualify for up to $1,500 in tax credits when filing 2010 income tax returns.  Home owner have until Dec. 31 to qualify for the tax credit.

Home owners can take advantage of the tax credit (Internal Revenue Code Section 25C) for efficiency upgrades made to existing homes, such as for certain types of insulation, windows, roofs, water heaters, heat pumps, furnaces and air conditioners.  Tax credits are available for 30 percent of the cost up to $1,500 for 2009 and 2010.

ENERGY STAR roof specifications are not restricted to any particular type of roof product, and include:

  • built-up-roofs
  • metal roofing products
  • roof tiles
  • spray polyurethane foam roof systems
  • asphalt shingles
  • single-ply membranes
  • roof coating products
  • modified bitumen

ENERGY STAR qualified roof products reflect more of the sun’s rays.  This can lower roof surface temperature  decreasing the amount of heat transferred into a building.  Roof products qualify for the ENERGY STAR label based on their solar reflectance, without compromising product quality and performance.

ENERGY STAR labeled roofs are more common on commercial buildings, but can also be used on residential homes.  Talk to a Minnesota roofing contractor to find out which roof system is the right choice for your home or building.

EPDM Roofing Systems Are An Energy Efficient Option

December 14, 2010

Commercial EPDM Single – Ply Roofing System – Part 1

Learn about the energy efficiency, durability and other various benefits of both black and white EPDM roofing systems.

As the green building movement continues to grow with the commercial construction market, energy-efficient roofing technologies are often at the forefront. For many building and roofing professionals, however, much of the attention has been directed solely at white or light-colored reflective roofing materials.

Many roof designers are taking their clues from studies that show reflective roof surfaces reflect solar radiation back into the atmosphere, keeping the roof system cooler and ultimately reducing building energy usage through lower air conditioning demand. In some cases, a white thermoplastic polyolefin (TPO) membrane fully adhered over polyiso insulation may in fact be the most appropriate roof design for a given building. This is especially true in climates where cooling degree days outnumber heating degree days.

Yet, frequently missing from the discussion about creating eco-friendly roofs are several important aspects:

  • EPDM roof systems, both black and white, can provide a strong, energy-efficient option
  • Reducing a building’s heating costs is often more important in many parts of the country
  • The roofing material’s durability and life-cycle assessment should be considered

EPDM Proven History

According to EPDM Roofing Association, ethylene propylene diene terpolymer (EPDM) rubber roofing membrane accounts for more than 1 billion square feet of new roof coverings in the United States each year. Although EPDM has been in use for over four decades, it has been the last 25 years where its growth has made it the single-ply market leader. Today, there are well over 5000,000 warranted roof installations totaling more than 20 billion square feet of EPDM membrane in place nationwide.

Behind more than four decades of successful field performance, EPDM has become the trusted system of choice for many roofing contractors and building owners worldwide. In addition to outstanding weathering characteristics, flexibility, durability, and life-cycle costs, EPDM also offers superior wind, hail and fire resistance. Specifically, ballasted EPDM roofing systems are among the most common and economical installation available today.

Talk to a Minnesota commercial roofing contractor to find out if an EPDM roof system is the right choice for your building.

Source: arwmag.com


Prevent Those “Dam” Leaks!

December 13, 2010

Preventing Ice Dams

With the 16 plus inches of snow we were blessed with in Anoka County last weekend (and even more in Washington County to the south and east) it looks like we are in for a good old fashion Minnesota winter. Heading to grandmother’s house this holiday, will take us all over lots and lots of white and drifted snow.

The snow is pretty for photos and fun for snowmobilers, skiers, boarders and sledders but not so great for our houses. With accumulated snow well into the foot range already, there is another necessary chore to add to the list to avoid homeowner headaches that come with the snow melt. We have to remove the snow from our roofs!

Though a shingled roof won’t pop like the Metrodome did over the weekend , ceilings have been known to become waterlogged and collapse under the stress of too much snow and ice dams.

Although individual cases look different, and often result in different types of damage, all ice-dam situations have two things in common: They happen because melting snow pools behind dams of ice at the roof’s edge and leaks into the house; also, ice dams and the damage that results from them is avoidable.

Cause

Ice dams form when melted snow refreezes at roof edges. Anyone who has lived in cold climates has seen ice dams. We’ve enjoyed the sparkling beauty of ice formations built along roof eaves (of other people’s homes). However, most of us don’t stop to understand why these ice bands form until our homes are damaged by them.

Three things are required for an ice dam to form: snow, heat to melt the snow and cold to refreeze the melted snow into solid ice. Ice dams can form when as little as 1 or 2 inches of snow accumulates on a roof – if the snowfall is followed by several days of sub-freezing temperatures. Ice dams develop as snow on the upper part of the roof melts. Water runs down the roof slope under the blanket of snow and refreezes into a band of ice at the roof’s edge creating a “dam”. Additional snow-melt pools against the dam and eventually leaks into the building through the roof or roof trim.

The reason ice-dams form along the roof’s lower edge, usually above the overhang, is straight-forward. The upper roof surface (toward the ridgeline) is at a temperature that is above freezing. And the lower part of the roof surface (along the eaves) is below freezing. The upper roof surface is located directly above the living space. Heat lost from the house warms this section of the roof, melting snow in this area. During periods of sub-freezing temperature the lower regions of the roof deck remain at sub-freezing ambient temperatures. Roof overhangs are not warmed by indoor heat-loss.

Deeper snow and colder temperatures increase the likelihood and size of ice dams. Every inch of snow that accumulates on the roof’s surface insulates the roof deck a little more, trapping more indoor heat beneath the roof deck. Frigid outdoor temperatures assure a fast and deep freeze at the eaves. So the worst ice dams usually occur when a deep snow is followed by very cold weather.

Damage

It’s easy to understand that allowing water to leak into your house is a bad idea. Ice dams cause millions of dollars of damage every year. Much of the damage is apparent. Water-stained ceilings, dislodged roof shingles, sagging ice-filled gutters, peeling paint, and damaged plaster are all easily recognized and usually repaired when weather or budgets permit. But other damage is not as obvious and often goes unchecked.

Ice dams usually develop along roof eaves, above the plateline of exterior walls. Heat lost from homes at this point aggravates snow melting and ice-dam development. There are two reasons for increased heat loss at this point: Rafters on most homes sit directly on top of exterior walls leaving a shallow space for insulation between the top of the wall and underside of the roof sheathing: Low R-value = heat loss! And secondly, builders are not particularly fussy when it comes to air-sealing this point to prevent the movement of warm indoor air up to the underside of the roof surface. Air can leak through wire and plumbing penetrations here. Also warm indoor air can leak from the wall cavities rising upward and passing between the small cracks that exist between the wall top-plate and drywall.

Roof leaks wet attic insulation. In the short term, wet insulation doesn’t work well. Over the long term, water-soaked insulation is compressed so that even after it dries, the insulation in the ceiling is not as thick. Thinner insulation means lower R-values. It is a vicious cycle. The more heat lost – the more ice dams form – the more it leaks – the more the insulation gets damaged – and so on. As a result you pay more to heat (and cool) your house. Cellulose insulation is hygroscopic and particularly vulnerable to the hazards of wetting.

Water often leaks down within the wall frame where it wets wall insulation and causes it to sag leaving uninsulated voids at the top of the wall . Energy dollars are again robbed, but more importantly, moisture gets trapped within the wall cavity between the exterior plywood sheathing and interior vapor barrier. The result: smelly, rotting wall cavities. Structural framing members can decay. Metal fasteners may corrode. Mold and mildew can form on wall surfaces as a result of elevated humidity levels. Exterior and interior paint blisters and peels. And the well-being of allergy-sensitive individuals is compromised.

Peeling of wall paint deserves special attention here because its cause may be difficult to recognize. It is unlikely that wall paint (interior or exterior) will blister or peel when ice dams are visible. Paint peels long after the ice and all signs of a roof leak have evaporated.

Water from ice dams infiltrate wall cavities. It dampens building materials and raises the relative humidity within wall frames. The moisture within the wall cavity eventually wets interior wall coverings and exterior claddings as it tries to escape (as either liquid or vapor). As a result, interior and exterior walls shed its skin of paint.

So the message here is to check your home carefully when ice dams form. Investigate even when there doesn’t appear to be a leak. Look at the underside of the roof sheathing and roof trim to make sure they haven’t gotten wet. Check the insulation for dampness. And when leaks inside your home develop, be prepared. Water penetration often follows pathways difficult follow. Don’t just patch the roof leak. Make sure that the roof sheathing hasn’t rotted or that other less obvious problems in your ceiling or walls haven’t developed. And then detail a comprehensive plan to fix the damage. But more importantly, solve the problem.

Solutions

The damage caused by ice dams can be controlled in 2 ways: Maintain the entire roof surface at ambient outdoor temperatures or build a roof so that it can’t leak into sensitive building materials if an ice dam forms.

Cold roofs make a lot of sense. Here you let the cold outdoor air work for you. Keep the entire roof as cold as the outdoor air and you solve the ice-dam riddle. Look at the roof of an unheated shed or garage, a pile of lumber or an abandoned home. Ice dams don’t form on these structures because there is no uneven melting and freezing!

For new construction it’s easy. Design the house to include plenty of ceiling insulation, a continuous air barrier separating the living space from the underside of the roof, and an effective roof ventilation system. Insulation retards the conductive flow of heat from the house to the roof surface. An air barrier retards the flow of heated air to the underside of the roof. And a good roof-ventilation system helps keep the roof sheathing cold. In an existing house this approach may be more difficult to follow. Often you are stuck with less than desirable conditions. But let’s look more closely at all the issues that will guide your strategy.

Insulation: Houses in the northern United States should be equipped with ceiling insulation of at least R-38 (about 12 inches of fiberglass or cellulose). The insulation should be continuous and consistently deep. The most notable problem area is located above the exterior wall. Raised-heel trusses or roof-framing details that allow for R-38 above the exterior wall should be used in new construction. In existing structures, where the space between the wall’s top plate and underside of the roof sheathing is restricted, install high R/inch insulating foam (R-6/inch). Be sure to seal the insulation at this point to prevent warm-air leakage from the living space.

Ventilation: A soffit-to-ridge ventilation system is the most effective ventilation scheme you can use to cool roof sheathing. Power vents, turbines, roof vents and gable louvers just aren’t as good. Soffit and ridge vents should run continuously along the length of the house. A baffled ridge vent (like the one sold by Air Vent) is best because it will exhaust attic air regardless of wind direction. The exhaust pressure created by the ridge vent sucks cold make-up air into the attic through the soffit vents. A 2-inch space or “air-chute” should be provided between the top of the insulation and the underside of the roof sheathing in all applications. The in-coming “soffit” air washes the underside of the roof sheathing with a continuous flow of cold air. CAUTION: Be sure to install insulation baffles above the exterior wall to protect the insulation from the air that blows in through the soffit vents.

Air Leakage: Insulation retards conductive heat loss, but a special effort must be made to block the flow of warm indoor air (convection) into the attic or roof area. Small holes allow significant volumes of warm indoor air to pass into attic spaces. In new construction avoid making penetrations through the ceiling whenever possible. But when you can’t avoid making penetrations or when you need to air-tighten existing homes use urethane spray-foam (in a can), caulking, packed cellulose, or weatherstripping to seal all ceiling leaks like:

  • wire penetrations
  • plumbing penetrations
  • ceiling light fixtures
  • attic hatches
  • chimneys
  • bathroom exhaust fans
  • intersection of interior partitions and ceiling

Contact a Minnesota roofing contractor to do an in-home evaluation to diagnose the performance of your home and together decide what the best course of action is for your situation.